Иммобилизация клеток

В 70-х годах XX века появились первые публикации об иммобилизации клеток микроорганизмов, а первое промышленное применение иммобилизованных клеток было осуществлено в Японии в 1974 г. С их помощью получали аспарагиновую кислоту.

Иммобилизованные клетки имеют ряд преимуществ как перед иммобилизованными ферментами, так и перед свободными клетками:

  • отсутствие затрат на выделение и очистку ферментов;
  • снижение затрат на выделение и очистку продуктов реакции;
  • более высокая активность и стабильность;
  • возможность создания непрерывных и полунепрерывных автоматизированных процессов;
  • способность к длительному функционированию полиферментных систем без экзогенных кофакторов.

Для иммобилизации могут быть использованы клетки в различном состоянии:

Применение ферментных препаратов

Особенно ощутимый вклад иммобилизованные ферменты внесли в тонкий органический синтез, в анализ, в медицину, в процессы конверсии энергии, в пищевую и фармацевтическую промышленности.

Для синтетической органической химии важно то, что в двухфазных реакционных средах фермент сохраняет каталитическую активность даже при исключительно малом содержании воды, поэтому равновесие катализируемой реакции (выход продукта) экспериментатор может регулировать в широких пределах, подбирая нужный органический растворитель. Иммобилизованные ферменты дали толчок к созданию принципиально новых методов «безреагентного» непрерывного анализа многокомпонентных систем органических (в ряде случаев и неорганических) соединений.

Методы иммобилизации ферментов

Существует два основных метода иммобилизации ферментов: физический и химический.

Физическая иммобилизация ферментов представляет собой включение фермента в такую среду, в которой для него доступной является лишь ограниченная часть общего объема. При физической иммобилизации фермент не связан с носителем ковалентными связями. Существует четыре типа связывания ферментов:

- адсорбция на нерастворимых носителях;

- включение в поры геля;

- пространственное отделение фермента от остального объема реакционной системы с помощью полупроницаемой перегородки (мембраны);

Ферменты

Для получения иммобилизованных ферментов используется ограниченное число как органических, так и неорганических носителей. К носителям предъявляются следующие требования (Дж.Порат, 1974):

  • высокая химическая и биологическая стойкость;
  • высокая химическая прочность;
  • достаточная проницаемость для фермента и субстратов, пористость, большая удельная поверхность;
  • возможность получения в виде удобных в технологическом отношении форм (гранул, мембран);
  • легкая активация;
  • высокая гидрофильность;
  • невысокая стоимость.

Классификация носителей схематично представлена на рисунке

Характеристики ферментов

Общая характеристика иммобилизованных ферментов

В современной биотехнологии одно из видных мест принадлежит ферментам. Ферменты и ферментные системы широко используются в различных отраслях промышленности, медицине, сельском хозяйстве, химическом анализе и т.д.

Ферменты — вещества белковой природы и поэтому неустойчивы при хранении, а также чувствительны к тепловым воздействиям. Кроме того, ферменты не могут быть использованы многократно из-за трудностей в отделении их от реагентов и продуктов реакции. Решить эти проблемы помогает создание иммобилизованных ферментов. Начало этому методу было положено в 1916 году, когда Дж.Нельсон и Е.Гриффин адсорбировали на угле инвертазу и показали, что она сохраняет в таком виде каталитическую активность. Сам термин «иммобилизованные ферменты узаконен в 1971 году, и означает любое ограничение свободы передвижения белковых молекул в пространстве.

Rambler's Top100 Яндекс цитирования